שתף קטע נבחר
הכי מטוקבקות
    זירת הקניות
    מהיר, פשוט וגאוני
    שימוש נכון בתורת היחסות הפרטית יכול לפשט הדמיות מחשב של מערכות יחסותיות. מדובר באחד היישומים המקוריים והמרתקים של תורת היחסות שפיתח הפיזיקאי אלברט אינשטיין

    מערכות יחסותיות, שבהן עצמים נעים במהירות קרובה למהירות האור, קיימות בשטחים רבים ושונים של הפיזיקה, ובעיקר בפיזיקת חלקיקים. במערכות כאלה יש הכרח להתייחס לתורת היחסות הפרטית, אשר מתארת את האופן שבו גורמים כמו זמן, מרחב, מסה ועוד ישתנו מנקודת מבטו של הגוף הנע. כשמבצעים חישובים העוסקים במערכות יחסותיות, ניתן לפשט את החישובים על-ידי מעבר למערכת ייחוס נוחה יותר; לדוגמה, התנגשות של שני חלקיקים עשויה להפוך פשוטה יותר לתפישה האנושית (ולחישובים המתמטיים) אם מתארים אותה מנקודת מבטו של אחד החלקיקים המתנגשים, ולא מנקודת מבטו של צופה נייח המתבונן בהתנגשות מהצד.

     

    מעברים כאלה בין מערכות ייחוס הם קבילים ולגיטימיים על פי תורת היחסות הפרטית, ומתבצעים על-ידי המרה (טרנספורמציה) מתמטית פשוטה המכונה טרנספורמציית לורנץ. באמצעות טרנספורמציית לורנץ ניתן לתאר את התהליך מכל מערכת ייחוס הנעה במהירות קבועה, ולתרגם את התוצאות לכל מערכת ייחוס אחרת. שום מידע הנוגע לתהליך אינו אובד כאשר עוברים ממערכת ייחוס אחת לאחרת, וכך ניתן לתאר את התהליך מנקודת מבטו של אחד החלקיקים המתנגשים, ואז "לתרגם" את המידע באמצעות טרנספורמציית לורנץ ולדעת כיצד ייראה התהליך גם בעיני הצופה הנייח.

     

    כאשר ניתוח של תהליכים יחסותיים מתבצע על-ידי מחשב, קיימת בעייתיות מיוחדת. כאשר מחשב מנתח תהליך באופן נומרי, עליו לחלק את האורך הגדול ביותר הרלוונטי (למשל, אורך המסלול במאיץ החלקיקים) למקטעים הקצרים ביותר הרלוונטיים (למשל, אורך פולס החלקיקים הנוֹרה במאיץ), ולבצע את החישוב כשהוא מתקדם בכל מהלך בקטע אחד. ואולם, במהירויות יחסותיות עולה קושי הנובע מתופעה המכונה "התכווצות האורך": צופים הנעים במהירויות שונות רואים אותו קטע עצמו כשונה באורכו. מוט של מטר, כפי שהוא נראה במעבדה, ייראה קצר יותר לצופה החולף על פניו במהירות יחסותית, וככל שהמהירות גדלה, כן יגדל ההבדל בתפישת האורך. בגלל השינויים היחסותיים בתפישת האורך, חלקיקים שונים במערכת עשויים לתפוש את המרחקים במערכת כשונים מאוד. לפיכך, היחס בין האורך הגדול ביותר הרלוונטי לצורך החישוב לאורך הקטן ביותר עשוי להיות אדיר, והרצת הדמיות מחשב של תהליכים יחסותיים דורשת זמן רב.

     

    הפיזיקאי ז'אן לוק ויי (Vay), חוקר במעבדת המאיץ בברקלי, מצא דרך פשוטה אך מבריקה לצמצם את הזמן הדרוש להדמיות של מערכות יחסותיות: יש לחשב ולמצוא מהי מערכת הייחוס שמנקודת מבטה יצטמצם היחס בין האורך הגדול ביותר לקטן ביותר. כך יצטרך המחשב לעבוד זמן קצר יותר, מאחר שהוא מנתח אורך כללי קטן יותר, ומחלק אותו למקטעים ארוכים יותר.

     

    יתרה מזו, מעבר כזה מאפשר לעתים להשתמש בקירובים מתמטיים, המניחים כי המערכת יותר פשוטה מכפי שהיא מבלי לגרוע בצורה משמעותית מדיוקו של התיאור הפיזיקלי. ויי השתמש בשיטה זו לעבודתו, והניח כי מדענים בכל העולם עושים כמוהו, אך הופתע לגלות כי אף שתורת היחסות הפרטית וטרנספורמציית לורנץ ידועות למדע למעלה ממאה שנים, הרי שאיש לא יישם אותן עד כה באופן זה. ויי פרסם דוגמאות אחדות של חישובים שקוצרו כך; באחת הדוגמאות היה זמן החישוב קצר פי אלף כאשר נבחרה עבורו מערכת ייחוס מתאימה יותר. מדענים הופתעו לשמוע על השיטה הפשוטה והיעילה, מאחר שזמן החישוב נחשב כאינדיקציה למורכבות המערכת, וברור שמורכבות המערכת אינה משתנה במעבר בין מערכות ייחוס.

     

    לפנייה לכתב/ת
     תגובה חדשה
    הצג:
    כל התגובות לכתבה "מהיר, פשוט וגאוני"
    אזהרה:
    פעולה זו תמחק את התגובה שהתחלת להקליד
    מומלצים